\(\newcommand{\versionNum}{$3.2$\ } \renewcommand{\tabcolsep}{2.4pt} \def\savedlnot{\lnot} \renewcommand{\arraystretch}{.63} \renewcommand{\arraystretch}{1} \renewcommand{\Naturals}{{\mathbb Z}^{\mbox{\tiny noneg}} } \renewcommand{\arraystretch}{.9} \renewcommand{\arraystretch}{.77} \newcommand{\hint}[1]{ } \newcommand{\inlinehint}[1]{ } \newcommand{\sageprompt}{ \texttt{sage$>$} } \newcommand{\tab}{} \newcommand{\blnk}{\rule{.4pt}{1.2pt}\rule{9pt}{.4pt}\rule{.4pt}{1.2pt}} \newcommand{\suchthat}{\; \;} \newcommand{\divides}{\!\mid\!} \newcommand{\tdiv}{\; \mbox{div} \;} \newcommand{\restrict}[2]{#1 \,_{\,#2}} \newcommand{\lcm}[2]{\mbox{lcm} (#1, #2)} \renewcommand{\gcd}[2]{\mbox{gcd} (#1, #2)} \newcommand{\Naturals}{{\mathbb N}} \newcommand{\Integers}{{\mathbb Z}} \newcommand{\Znoneg}{{\mathbb Z}^{\mbox{\tiny noneg}}} \newcommand{\Zplus}{{\mathbb N}} \newcommand{\Enoneg}{{\mathbb E}^{\mbox{\tiny noneg}}} \newcommand{\Qnoneg}{{\mathbb Q}^{\mbox{\tiny noneg}}} \newcommand{\Rnoneg}{{\mathbb R}^{\mbox{\tiny noneg}}} \newcommand{\Rationals}{{\mathbb Q}} \newcommand{\Reals}{{\mathbb R}} \newcommand{\Complexes}{{\mathbb C}} \newcommand{\relQ}{\mbox{\textsf Q}} \newcommand{\relR}{\mbox{\textsf R}} \newcommand{\nrelR}{\mbox{$\not${\textsf R}}} \newcommand{\relS}{\mbox{\textsf S}} \newcommand{\relA}{\mbox{\textsf A}} \newcommand{\Dom}[1]{\mbox{Dom}(#1)} \newcommand{\Cod}[1]{\mbox{Cod}(#1)} \newcommand{\Rng}[1]{\mbox{Rng}(#1)} \DeclareMathOperator{\caret}{$\scriptstyle\wedge$} \renewcommand{\arraystretch}{.77} \newcommand{\lt}{ < } \newcommand{\gt}{ > } \newcommand{\amp}{ & } \)

ChapterBibliography

[1]
  
R.~E.~Greenwood A.~M.~Gleason and L.~M. Kelly. \emph{The William Lowell Putnam Mathematical Competition Problems & Solutions: 1938-1964}. The Mathematical Association of America, Reissued 2003.
[2]
  
Martin Aigner and Gunter~M. Ziegler. \emph{Proofs from THE BOOK}. Springer-Verlag, 2nd edition, 2001.
[3]
  
Wikipedia contributors. Cantor-bernstein-schroeder theorem. Wikipedia, the free encyclopedia. \href{http://en.wikipedia.org/wiki/Cantor-Bernstein-Schroeder_theorem} {http://en.wikipedia.org/wiki/Cantor-Bernstein-Schroeder\_theorem}.
[4]
  
Wikipedia contributors. Christian \protect{G}oldbach. Wikipedia, the free encyclopedia. \href{http://en.wikipedia.org/wiki/Goldbach}{http://en.wikipedia.org/wiki/Goldbach}.
[5]
  
Wikipedia contributors. Erdos number. Wikipedia, the free encyclopedia. \href{http://en.wikipedia.org/wiki/Erdos_number}{http://en.wikipedia.org/wiki/Erdos\_number}.
[6]
  
Wikipedia contributors. The four color theorem. Wikipedia, the free encyclopedia. \href{http://en.wikipedia.org/wiki/Four_color_theorem}{http://en.wikipedia.org/wiki/Four\_color\_theorem}.
[7]
  
Leonard F.~Klosinski Gerald L.~Alexanderson and Loren~C. Larson. \emph{The William Lowell Putnam Mathematical Competitions Problems & Solutions: 1965 - 1984}. The Mathematical Association of America, Reissued 2003.
[8]
  
Richard~K. Guy. The lighthouse theorem, \protect{M}orley & \protect{M}alfatti -- a budget of paradoxes. \emph{American Mathematical Monthly}, 2007.
[9]
  
Bjorn~Poonen Kiran S.~Kedlaya and Ravi Vakil. \emph{The William Lowell Putnam Mathematical Competition 1985-2000: Problems Solutions, and Commentary}. The Mathematical Association of America, 2002.
[10]
  
C.~W.~H. Lam. The search for a finite projective plane of order 10. \href{http://www.cecm.sfu.ca/organics/papers/lam/paper/html/paper.html}{http://www.www.cecm.sfu.ca/organics/papers/lam/paper/html/paper.html}.
[11]
  
Saunders MacLane. \emph{Categories for the Working Mathematician}. Springer-Verlag, 2nd edition, 1998.
[12]
  
John~J. O'Connor and Edmund~F. Robertson. \href{http://www-history.mcs.st-andrews.ac.uk/history/index.html}{http://www-history.mcs.st-andrews.ac.uk/history/index.html}. The MacTutor History of Mathematics archive.
[13]
  
Stanislaw Radziszowski. Small ramsey numbers. \href{http://www.combinatorics.org/Surveys/ds1.pdf} {http://www.combinatorics.org/Surveys/ds1.pdf}.
[14]
  
Gian-Carlo Rota. \emph{Indiscrete Thoughts}. Birkh\"{a}user, 1997.
[15]
  
M.~Satyanarayana. none given. \emph{Math. Quest. Educ. Times (New Series)}, 1909.
[16]
  
D.~J. Struik. \emph{A Source Book in Mathematics, 1200-1800}. Princeton University Press, 1986.
[17]
  
Alfred~North Whitehead and Bertrand Russell. \emph{Principia Mathematica}. Cambridge University Press, 1910.