
A Gentle Introduction to Linear
Algebra





A Gentle Introduction to Linear
Algebra

Joe Fields
Southern Connecticut State University

September 2016



Edition: version 0.1

Website: GILA on GitHub

© 2016 Joe Fields

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.3 or any later
version published by the Free Software Foundation; with no Invariant Sections,
no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled “GNU Free Documentation License”.

http://http://osj1961.github.io/gila/


To Martha.





Acknowledgements

A big "Thank You!" to the students at SCSU who inspired this project and
helped to make it a reality. I’d also like to thank my colleagues in the SCSU
Math department whose encouragement gave me the strength to get started
on this. This book was created using only open-source tools: MathbookXML,
LaTeX, GIT, GIMP, XFig, OpenSCAD and Sage; thank you to all of the de-
velopers and the communities that selflessly donate their time and efforts to
building and maintaining these projects. Finally, I’d like to gratefully acknowl-
edge the support provided by my institution (and hence, by the taxpayers of
Connecticut) – a one semester sabbatical leave during which I did the bulk of
the design and writing.

vii



viii



Foreword

To Do: Get the most eminent mathematician - that you can rope into it - to
write a foreword.
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Preface

This is a free/open-source textbook that provides an introduction to Linear Al-
gebra. There is a light emphasis on mathematical proof and a strong emphasis
on applications, making this book appropriate for science and engineering ma-
jors and for mathematics majors who are taking Linear Algebra early in their
college careers. Math majors who have already had an introduction to proofs
course – my other open-source textbook “A Gentle Introduction to the Art of
Mathematics” was written for such a course – may benefit from a more ad-
vanced treatment that features proof. A good choice would be “A First Course
in Linear Algebra” (a.k.a. FCLA) by Robert Beezer, which is also a free,
open-source project.
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Chapter 1

Introduction

The subject we are about to study, Linear Algebra, sounds like it might have
something to do with lines and doing algebra with them. This is true if you are
willing to think metaphorically. . . It might be somewhat closer to the truth
if we were to say that Linear Algebra is about learning to understand higher
dimensions. We’ll be surprisingly far along in our study of the topic before we
can precisely define what “dimension” actually means, but we expect that you
have some notion already: the Euclidean plane where we studied Geometry
is two dimensional, the world we live in is three dimensional, Albert Einstein
taught us to view the world not just as space — but as space-time — a four
dimensional concept. We needn’t jump off into super advanced physics (or
science fiction for that matter) in order to understand higher dimensionality.
Dimension, at least informally, just means the number of real numbers it takes
to describe something. Locating a point in three-dimensional space requires
three numbers — usually x, y and z. If we are keeping track of aircraft,
knowing where they are in 3-space is certainly necessary, but it might also be a
good idea to keep abreast of which way they are going ! To truly understand an
aircraft’s state, one needs to have six numbers: x, y and z, but also the velocity
components x′, y′ and z′. This make the state of an airplane 6-dimensional.
Perhaps this is why air traffic controllers make the big bucks.

The 6-dimensionality of an aircraft’s state may seem somewhat artificial.
Aren’t we really just dealing with two separate 3-dimensional entities?

In Economics there is a high-dimensional entity known as the Leontief
Input-Output model. In this model the state of an Economic system is de-
scribed by a large number of real quantities, one for each sector of the econ-
omy. In a 1965 Scientific American article Wassily Leontief (who won a Nobel
prize for this work) described his model in terms of a “toy example” where the
economy was divided into 82 sectors. Today one could easily develop a Leontief
I/O model where the economy was divided up into a million sectors. Perhaps
this is why Economists make even bigger bucks.

When we do Linear Algebra in two dimensions we are indeed talking about
lines. One of the classic problems is to figure out whether two lines intersect
and if so, where. This is a situation where our ability to visualize things in two
dimensions can lead us straight to the answer. That is certainly not the case
in a million (or even in six) dimensions. Fortunately, there are calculational
techniques that work (and even work fairly quickly on a good computer) in
just about any number of dimensions you may be interested in.

There are three different ways of looking at linear algebra problems: sys-
tems of linear equations, vector equations, and transformations. These three
views actually represent the same underlying structure, just in different ways.

1



2 CHAPTER 1. INTRODUCTION

There are various situations where one of these three viewpoints is preferable,
so it is a good idea to be able to switch back and forth between these repre-
sentations.

In Section 1.1 we will look at the same (really easy) problem from each of
these 3 perspectives.

1.1 Getting started

The first problem we’re going to look at is fairly trivial. I bet you can solve
this in your head:

I’m thinking of two numbers x and y. Their sum is 42, and their
difference is 6. What are they?

This word problem can be instantly translated into a pair of equations.
Later, when we have more sophisticated problems there may be many more
unknown quantities and there may be many more equations. Here we are
dealing with a system of equations having 2 equations in 2 unknowns.

x+ y = 42

x− y = 6

This one is about as easy as a system of two equations in two variables
can get. Actually, that’s not quite true. The easiest form for a system of
two equations in two unknowns is if they basically just are statements of the
answer, like:

x = 24

y = 18.

Solving a system of equations just means (somehow) transforming it from
something like the first form to something like this latter form.

There are a small number of simple procedures that we can apply to systems
without effecting their solutions. We can use these operations to convert almost
any system into one that looks like that latter form (each equation just states
what the value of some variable is). We’ll get around to the full story in section
1.2, but for now, notice that if we add the two original equations together
(adding equations means adding left sides and adding right sides separately)
we get something that only involves x. And of course, once we know one of
the variables it isn’t very hard to find the other.

For this example problem, finding the solution was very easy. There are
more difficult systems where finding the solution by hand would be challenging
so we are going to want to become familiar with some kind of computer tools
for automating these things. In this book, we’ll be using Sage, a free, open-
source, computer algebra system developed by William Stein. Here is a sample
of how Sage can be used to solve a system of equations:

x, y = var('x, y')
solve([x+y==42, x-y==6], x, y)

[[x == 24, y == 18]]
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We glossed-over a small but important issue in the above. How do we know
that our answer was the only answer? And for that matter, is it necessarily true
that there must be an answer to some system of equations? These are what
are known as existence and uniqueness questions: Does there exist an answer
to our problem? (Existence.) And, if there is an answer, how do we know it
is the only answer? (Uniqueness.) There are systems of equations where all of
the possible behaviors are exhibited: no solutions, unique solutions and lots of
solutions.

Exercise 1.1.1. Explain why the following system has no solutions at all.

2x− y = 7

2y − 4x = 8.

Hint. Put both equations into slope-intercept form (y = mx+ b).

That was a linear algebra problem seen from the “systems of equations”
perspective. We still need to look at the “vector equations” and “transforma-
tions” viewpoints. So next we’ll look at a question of the vector flavor. We’re
going to think about playing chess, not on a board, but on the infinite x—y
plane.

Consider the piece known as a bishop. If you’re not familiar with chess,
this is the piece that can move in the diagonal directions. Think of the bishop
as having two moves that it can do (but it can do them any number of times).
It can do a move we’ll refer to as UR; move one unit in the x direction while
simultaneously moving one unit in the y direction — by doing this multiple
times the bishop can travel in the upper right direction. It also has a move that
allows it to travel along the other diagonal — move one unit in the x direction
while simultaneously moving negative one unit in the y direction. We’ll call
that move LR.

For those who are familiar with chess, you’ll know that bishops are forever
trapped on the same color square — one of your bishops is always on black and
the other always on white. This means that some “bishop moving questions”
won’t have solutions — for example, a bishop sitting at the origin, (0, 0), can
never move to (0, 5); those squares have opposite colors! To get around this
limitation we’re going to let our bishops make fractional moves. For instance
if it starts at the origin and makes 1/2 of the upper-right move then it will
arrive at (1/2, 1/2). Now, getting a little stranger, we’re going to also allow
our bishops to make negative moves. Maybe we should think of a negative
move as “undoing” a regular move. . .

In any case negative moves allow us to move the bishop in the opposite
directions along the diagonals. Finally, we may as well give our bishops the
freedom to move any amount — that is, any real number can be used as a
so-called scalar, shrinking or stretching either of the two basic moves. Got it?
We can do things like π · UR and

√
2 · LR.

So, after all that setup, here’s the question: If a bishop starts at (0, 0), can
it make some number of UR and LR moves and wind up at (42, 6)? If so, how
many URs and how many LRs?

The things we’ve been calling UR and LR are vectors. If you ask someone
from the physical sciences to define a vector they’ll say “it’s a thing that has
both a magnitude and a direction”. (Which is fine as far as it goes.) Meteo-
rology provides some nice examples. A weather map often shows a lot of basic
data about the conditions at various places — wind, temperature, barometric
pressure and humidity are common. Of these, only the wind is a vector quan-
tity, it needs to be specified with both a magnitude and a direction (e.g. 15
mph out of the Northeast), the others all just have magnitudes.
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There is a different way of thinking about what a vector is, that is preferable
in many circumstances. A vector is the difference between two positions. Let
me put this another way: a vector gives you a set of directions to go from one
point to another. (I mean “directions” in the sense of the things someone tells
you if you ask “How do I get to the Kwik-E-Mart from here?”)

If you are currently at the point (3, 4) and you want to move to the point
(5, 12) you need to increase your x-coordinate by 2 units and you must increase
your y-coordinate by 8 units. We just described the vector 〈2, 8〉, the numbers 2
and 8 are known as the components of the vector. Note that this is different in
a not-so-subtle way from the point (2, 8). The point is stationary, the vector is
there to describe a change. If you start at the origin and follow the directions
specified by the vector 〈2, 8〉 you will of course wind up at the point (2, 8),
but if you start at some other point, it’s equally obvious that you won’t!.
Sometimes people will talk about “position vectors” in this sort of context —
the position vector 〈x, y〉 goes from the origin to the point (x, y). Generally, it
is preferable to keep the distinction between points and vectors clear. When
you treat a vector as a position vector (i.e. think of it as a point) you are
loosing something. Ordinarily a vector is free; it can be slid around from one
point to another so long as its components aren’t changed.

Here’s how solving the vector variant of our problem might look in Sage:

x, y, u, v = var('x, y, u, v')
u = vector(QQ, [1, 1])
v = vector(QQ, [1,-1])
lhs = x*u+y*v
rhs = vector(QQ, [42 ,6])
solve([lhs [0]== rhs[0], lhs [1]== rhs[1]], x, y)

[[x == 24, y == 18]]

So, at this point we’ve looked at a simple linear algebra problem from the
systems of equations perspective and from the vector equations perspective.
The final perspective we want to illustrate is that of linear transformations.

Basically, a linear transformation is a function that takes vectors as inputs
and spits out vectors as outputs. You’re probably familiar with the following
sort of diagram for functions.

fx f(x)

In Multivariable Calculus you may also encounter functions that are dia-
gramed like so:

f(x,y)
x

y
f f (t)t f

The first is a real-valued function of two variables — think of it as taking a
vector as input and returning a scalar. The second is a vector-valued function
of a single real variable. The mapping that gives temperature as a function of
position on a metal plate is an example of the first sort. When we represent
the position of a particle moving around in space (as a function of time) we
are using the second sort.
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Linear transformations are functions where there are vectors on both the
input and the output side.

ff

x

y<x,y> (<x,y>)

Moreover, linear transformations are linear, which means the components
of the output are computed in a very simplistic way from the components of the
inputs. The only things that are allowed are adding things up and multiplying
by constants.

So let’s give an example of a linear transformation. This will be a function
that takes a vector 〈x, y〉 as input, and returns a vector 〈u, v〉 as output. We
will compute u and v (the components of the output vector) from x and y
(the components of the input vector by “adding things up and multiplying by
constants”:

u = x+ y

v = x− y

By convention, people usually call a linear transformation T and use a
notation that looks just like Euler notation for functions (because in fact,
that’s what it is!)

T (〈x, y〉) = 〈u, v〉.

There are two kinds of problems one can ask: maybe you know the input
vector and you’d like to find the output vector, or vice versa. When you’ve
got the input it’s very easy to find the output! You just plug in. The more
interesting question is when it’s vice versa, suppose you know that 〈u, v〉 =
〈42, 6〉 how can you arrive at the solution 〈x, y〉 = 〈24, 18〉? We’ll be looking
at this kind of thing in more depth in Section 1.4.

1.2 Systems of equations
In this section we’ll look much more closely at the “systems of equations”
approach to linear algebra.

First a few words about notation. When there are seventeen variables in
a problem it becomes really awkward to use different letters for each variable.
When there are a thousand variables it’s impossible! We will follow the almost
universal convention that the letter x will be used for the variables, with a
subscript to identify which one. If we were to translate the problem from
Section 1.1 into this notation it would become

x1 + x2 = 42

x1 − x2 = 6.

A linear combination of some set of numbers {x1, x2, . . . , xn} is created by
multiplying each of the x’s by constants and then adding everything up. Of
course if the constants are 1 or −1 (as in the previous example) we tend to
forget that they’re there!
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Example 1.2.1. Consider x1 + 2x2 + 3x3 + 4x4 + 5x5. This is a linear com-
bination of the five variables {x1, x2, x3, x4, x5}. The constants (1, 2, 3, 4, and
5) are called the coefficients of the linear combination.

An equation is linear if it has the form of a linear combination set equal
to some value on the right-hand side – or if it can be put into that form. For
example

x1 + 2x2 + 3x3 + 4x4 + 5x5 = 15

is a linear equation in five variables.
Also,

x1 + 3x3 = x2 + x4

is a linear equation (in four variables) because we can manipulate it into
the form

x1 − x2 + 3x3 − x4 = 0.

Exercise 1.2.2. The linear equation

x1 + 2x2 + 3x3 + 4x4 + 5x5 = 15

has a solution where all of the variables are set equal to 1. Are there others?
Hint. Try setting one of the variables to zero. That essentially eliminates
that one and gives you a new equation with only four variables. Does the new
equation have a solution?

A system of equations is just a collection of linear equations.
The notation for systems of equations gets a bit complicated when we try to

write them in general (that is, without particular values given for the various
constants involved). There are three sorts of things that need names in such a
system: the variables, the coefficients of the variables, and the numbers on the
right-hand sides. There is a convention that is fairly universal for the names
and numbering of these elements. The variables are x’s with subscripts, the
right-hand sides are b’s with subscripts, and the coefficients are a’s with two
subscripts (we need to indicate the equation that a given coefficient is in and
also, which variable it is multiplying.

For example, here is how we would write the general form of a system of
three equations in four unknowns:

a11x1 + a12x2 + a13x3 + a14x4 = b1

a21x1 + a22x2 + a23x3 + a24x4 = b2

a31x1 + a32x2 + a33x3 + a34x4 = b3

Notice that the indices on the x’s run from 1 to 4, the indices on the b’s
run from 1 to 3, and that there are a total of 12 coefficients.

Example 1.2.3 (Investments). Suppose you have $10, 000 that you want to
invest in the stock market. After some research you’ve found three companies
that you think will be good investments. SolarCity Corp (SCTY) is trading at
about $20 per share. SunPower - Solar energy company (SPWR) is trading at
about $9 per share. First Trust Global Wind Energy (FAN) is at about $12
per share. One equation you can immediately write down is
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20x1 + 9x2 + 12x3 = 10000,

where x1 is the number of shares of SCTY we will buy, x2 is the number
of shares of SPWR, and x3 is the number of shares of FAN.

If we said nothing further, we’d have just this one equation and there are
many possible sets of values for the variables that satisfy it. Notice that there
are two broad categories of companies represented in our stock picks – solar
energy and wind power. Perhaps we’d be wise to split our investment between
them based on some rational theory, for the sake of argument let’s say that
we’ve been advised to use a 60/40 split between solar and wind. What was
previously a single equation is now two:

20x1 + 9x2 = 60000,

12x3 = 40000.

Notice that the second equation uniquely determines the value of x3 but
that the other variables still have a bit of freedom. (For instance, notice that
we could set either x1 or x2 to 0, and the other variable’s value would then
be uniquely determined. Or, of course we could have some mixture where
our $6, 000 is split up between the two companies. As it happens, these two
companies are competitors and there is some probability that one will succeed
and the other will fail. A wise investor tries to guess what that probability
is and “hedge” their bets on the market. For the sake of argument let’s say
we think SCTY is three times more likely to come out the winner in this
competition. You might be inclined to just buy only the SCTY stock, but
that’s not what a hedging strategy would indicate – you should mix your
investments in a proportion that reflects the probabilities involved. As an
equation in the x’s we have

20x1 = 3 · 9x2.

At this point we’ve obtained a system of 3 equations in 3 variables which,
after manipulating the last one a little bit, looks like the following.

20x1 + 9x2 = 60000

12x3 = 40000

20x1 − 27x2 = 0

It is usually a good idea to format your systems so that the variables in
each equation line up in columns.

20x1 + 9x2 = 6000

12x3 = 4000

20x1 − 27x2 = 0

Solution. Now, let’s go ahead and figure out what the values of the variables
should be. In other words, how many shares of each stock should we purchase?

First, look at that middle equation. It isn’t very complicated, indeed, it
basically tells us the value of x3 — we just need to divide both sides by 12 to
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get that x3 = 333.3. Unfortunately, we can’t buy fractions of a share of stock
so we’ll round to 333.

We’re somewhat lucky in that the variable x3 doesn’t appear in the other
equations, but even if it did, we could now substitute the value we just deter-
mined for it. Furthermore, at this point, we have no more use for that middle
equation; we’ve used it up in finding the value of x3. So now we’ve reduced
our problem to a simpler system — one that consists of just two equations in
the remaining two unknowns.

20x1 + 9x2 = 6000

20x1 − 27x2 = 0

If we subtract the first equation from the second we get

− 36x2 = −6000

and this tells us (just divide both sides by −36) the value of x2.
What we’ve determined so far is that x3 = 333 and x2 = 167. By substi-

tuting those values into the very first equation we wrote down we’ll be able to
find the value of x1.

After making those substitutions we get an equation that only has one
variable:

20x1 + 9 · 167 + 12 · 333 = 10000.

It’s child’s play to find the solution is x3 = 225.
So in the end we should put in an order for 225 share of SCTY, 167 shares

of SPWR and 333 shares of FAN. Notice that because of rounding we’ve come
up one dollar short of our intended investment.

A bit more formalism is appropriate now. We’ll start with some definitions.

Definition 1.2.4 (linear system). A linear system, also known as a system
of linear equations is a collection of m equations in n unknowns of the form

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

...
am1x1 + am2x2 + · · · + amnxn = bm

Note that the doubly-indexed quantities (aij) as well as the singly-indexed
quantities (bi) are real numbers and that the m variables are indicated by x’s
(with subscripts).

Remark 1.2.5. The use of variables with multiple indices in the above def-
inition bears comment. First of all, note that we are trying to deal with the
general situation where there is an unknown number of equations (m) in an
unknown number of variables (n). Let’s consider the b’s first — these are the
constants that appear on the right-hand sides of the equations, so there are m
of them. The situation for the a’s is more complicated. The a’s are the coef-
ficients, they are constant numbers that the variables are multiplied by, and
there are two indices on each of them. The first index tells us which equation
we are in. The second index matches with the subscript on the variable. For
example a1423 would be the coefficient of x23 in the 14th equation in a system.
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What does it mean to say we have found an “answer” to a system of equa-
tions? Essentially, it is this: we have found a set of values for the variables that
“work” in all of the equations. Sometimes people say that this set of values
“satisfies” the equations. To be completely clear, what is meant is that if one
substitutes these values for the variables in the equations of the system, all
of them (the equations) will be true. It is convenient to regard such a set of
values as a vector. For example the solution we obtained in Example 1.2.3
would be regarded as the vector 〈225, 167, 333〉.

Definition 1.2.6 (solution sets). Given a system of m linear equations in n
unknowns, the solution set of the system is the set of all vectors of length n
that satisfy all m of the equations in the system.

Definition 1.2.7 (equivalent systems). Two linear systems are called equiv-
alent if and only if they have identical solution sets.

Remark 1.2.8. The equivalence of linear systems is an example of what is
known as an equivalence relation. Equivalence relations are used in theoretical
mathematics when we are trying to capture the notion that two things — while
not actually equal — are similar enough that we can treat them as being sort
of a junior version of equal. . .

For a relationship to earn the title “equivalence relation” it must have a
short list of properties. These properties are certainly true of the ordinary
equals sign:

reflexivity A relation is reflexive iff all elements are related to themselves.

symmetry A relation is symmetric iff whenever x and y are a pair of elements
that are related, then y and x are also a pair that are related. (I.e. the
order can always be reversed.)

transitivity Perhaps you’ve heard the phrase “Two things that are equal to
a third must be equal to each other.” That’s the essence of transitivity.

There really is much more that we should say about equivalence relations in
general and the consequences that ensue when we can show that some relation
is an equivalence relation. We refer the interested reader to chapter 6 in GIAM.
In the remainder of this book we are going to see how very useful the notion
of equivalence of linear systems can be. Hopefully this will give you some
indication of how useful equivalence relations in general can be!

One final word about equivalence relations (in general) and the equivalence
of linear systems (in particular): It is customary, when introducing this notion,
to ask students to come up with a proof that shows that some given relation
(in this case, equivalence of linear systems) is indeed an equivalence relation.
Such proofs are actually relatively straightforward, but relax, we’re going to
let you off the hook this time! Showing that equivalence of linear systems is
an equivalence relation is actually too easy. What one needs to do is show
that it has each of the three properties: reflexivity, symmetry and transitivity.
Each of those is an almost immediate consequence of the way this equivalence
is defined. We define two systems to be equivalent if and only if they have the
same solution set. In other words, equivalence is defined in terms of set equality.
Set equality is definitely an equivalence relation, so it has the three properties.
Finally, the arguments that show that equivalence of linear systems has the
three properties all have the same form: in order to show that the equivalence
of linear systems has a property we use the fact that set equality has that
property. This is called inheritance.

https://osj1961.github.io/giam/
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The general idea is this: there are lots and lots of different linear systems
that are equivalent. They all have the same solution set. Some of these systems
are in a nice form that allows us to see what the solution set is. Others are
not. We need to transform the latter into the former!

More specifically, there are three operations that can be applied to linear
systems which do not have any effect on solution sets. We can apply these
three operations in any way we like! We’ll just be transforming our linear
system into a slightly different one that is equivalent to the original. Finally,
you’ll see that it is pretty easy to strategize a bit and transform difficult linear
systems into the nice sort (where the solution set is very evident) using these
three operations.

The three operations go by many names; we’ll refer to them as Reordering,
Scaling and Combining. In the next few paragraphs we’ll discuss each of them
in turn and explain why they don’t have an effect on the solution set of a
system.

Reordering means what it sounds like. The solution set is determined by
checking whether a given solution vector satisfies all of the equations. It is
pretty clear that the order that the equations are listed in is of little impor-
tance. In many treatments of linear algebra an operation called “swapping”
is used instead — swapping two equations is a special (particularly simple)
instance of reordering and any more general reordering can be accomplished
by a succession of swaps.

Exercise 1.2.9 (permutations and swaps). We have placed the letters A
through F in sequence below — however they are not in the usual (alpha-
betic) order. Determine a sequence of swaps that will reorder them so that
they are in alphabetic order.

DCABFE

Hint. There are many ways to proceed, but putting A then B then C et
cetera where they belong using swaps is one possibility. What swap puts A in
the first position?

Solution.

DCABFE (given)
ACDBFE swap D and A
ABDCFE swap C and B
ABCDFE swap D and C
ABCDEF swap F and E

Scaling is another operation where it is fairly obvious that there will be no
effect on solution sets. Scaling involves multiplying both sides of an equation
by some non-zero constant. Very often that non-zero constant will be the
reciprocal of the coefficient of one of the variables; scaling by such a constant
is useful in solving for that variable. Perhaps it is clear that multiplying both
sides of an equation by the same thing will have no impact on what values
of the variables satisfy the equation. . . But why does the constant need to
be non-zero? Multiplying both sides of any equation by 0 will produce a new
equation that looks like 0 = 0 which is certainly true! In fact, of course, that’s
what the problem is; if the equation was previously false for some vector of
variable values (thus it served to exclude that vector from the solution set) it
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will now be true. So vectors of variable values that previously were not in the
solution set will now be in it — that’s the sort of thing we are trying to avoid!

Combining (a.k.a replacement) is the most difficult of the three operations
and as you might guess, it is also the most useful. Combining consists of
adding a multiple of some other equation to a given one. Another way to think
of this is that we replace some equation by itself plus a multiple of some other
equation. This is probably why some people call this operation Replacement.

When we added the equations x + y = 42 and x − y = 6, obtaining the
new equation 2x = 48 back in Section 1.1 we were really doing a “Combining”
operation. By the way, when we divided both sides of that new equation by 2
we were “Scaling.”

We’ll close this section by giving an example — using the three operations
to find the solution of a small linear system.

Example 1.2.10 (A small linear system). There is a unique solution to the
following system of 3 equations in 3 unknowns. What is it?

x1 + x2 + x3 = 21

2x1 − x2 + x3 = 12

x1 + 3x2 − x3 = 17

Solution. The first thing we’ll do is a combining operation. We’ll subtract
twice the first equation from the second. It will be convenient to develop
a shorthand for expressing these operations. This one could be written as
E2 = E2 − 2E1.

x1 + x2 + x3 = 21

− 3x2 − x3 = −30
x1 + 3x2 − x3 = 17

Next we’ll do a similar combining operation to eliminate x1 from the 3rd
equation. This one would be expressed as E3 = E3 − E1.

x1 + x2 + x3 = 21

− 3x2 − x3 = −30
+ 2x2 − 2x3 = −4

You should take note that we have done something mildly clever in elimi-
nating the occurrences of x1 in the latter two equations. Now we can use them
in further combination operations without fear that they will effect terms in-
volving x1.

For our next operation let’s scale the last equation by 1/2; this isn’t strictly
necessary but it makes things look a little simpler and since every coefficient in
the 3rd equation is even we won’t end up dealing with fractions . . . E3 = 1

2E3.

x1 + x2 + x3 = 21

− 3x2 − x3 = −30
x2 − x3 = −2

We’ve just cleaned up the 3rd equation so that the first non-zero term in it
(the one involving x2) has a coefficient of 1. This makes equation 3 very useful
as a tool for eliminating the variable x2 from other equations, so next we’ll do
a reordering operation to move it a bit closer to the top of the heap.

x1 + x2 + x3 = 21

x2 − x3 = −2
− 3x2 − x3 = −30
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Next, let’s use what is now equation 2 to eliminate x2 from (the new)
equation 3: E3 = E3 + 3E2.

x1 + x2 + x3 = 21

x2 − x3 = −2
− 4x3 = −36

Finally, although (again) this isn’t strictly necessary, let’s scale the 3rd
equation so that the coefficient of x3 is 1. . . E3 = −1

4 E3.

x1 + x2 + x3 = 21

x2 − x3 = −2
x3 = 9

Wait! Should the last sentence really have started with the word “Finally”?
It seems like the system is still pretty complicated. We certainly haven’t
achieved the simplest possible sort of linear system, but we have turned the
original system into a type that is known as “triangular”. Do you see why? This
kind of system is very easy to solve by a process known as back-substitution.
The 3rd equation tells you the exact value of the third variable (x3 = 9), you
can then substitute that value into the second equation to obtain x2−9 = −2.
So now we can easily see that x2 = 7. Hmmm. Now we’ve got known values
for x2 and x3 which we can substitute into the 1st equation to get

x1 + 7 + 9 = 21

Okay. That’s easy, x1 = 5.

1.3 Vector equations
We have previously seen the idea of a linear combination of numbers. In this
section we will look at forming linear combinations of vectors. The typical
problem of the vector equations sort is: can we find the coefficients so that a
linear combination of some set of vectors (with those coefficients) is equal to a
given vector?

Recall that when we formed linear combinations of numbers we were allowed
to “multiply by constants and add things up.” So if we are planning to do the
same thing with vectors we need to understand what it means to multiply a
vector by a constant and what it means to add vectors.

We use the term scalar to refer to real numbers, especially when referring to
the numbers that we multiply vectors by. Calling them “constants” is probably
not the best plan; both a scalar and a vector can be constant — that just
means they aren’t changing. It’s usually more important to distinguish the
vectors from the scalars — which things have multiple components and which
don’t? When we think of vectors as “those things that have both a direction
and a magnitude,” the effect of multiplying by a scalar is to leave the direction
unchanged, but change the magnitude by scaling it as the scalar indicates. If
the scalar is less than 1, the magnitude of the vector will be reduced; if the
scalar is greater than 1 it will be increased. Of course, if the scalar is negative
the direction will be effected, but in a rather simplistic way: the vector ends
up facing the opposite direction.

When we have an actual vector and a scalar we’d like to multiply it by, the
operation we perform is almost the only thing it could be! Just multiply each
of the components of the vector by the scalar.
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Definition 1.3.1 (scalar-vector product). If ~v is a vector having m compo-
nents, ~v = 〈v1, v2, . . . , vm〉 and s is a scalar, then the scalar multiplication
of ~v by s is defined by

s~v = s〈v1, v2, . . . , vm〉 = 〈sv1, sv2, . . . , svm〉

Remark 1.3.2. The scalar-vector product looks rather like a funny version of
the distributive law!

The addition of vectors is best thought of in terms of “directions”. Suppose
the directions to got from my house to the Kwik-E-Mart are: “go 3 blocks north
and 1 block east” (call that vector ~v, we might write it’s component form as
~v = 〈1, 3〉). Suppose in addition that the directions to go from the Kwik-E-
Mart to Moe’s Tavern are “go 1 block north and 2 blocks west” (let’s call this
~w = 〈−2, 1〉). The meaning of the vector sum is the vector that describes the
change that would be effected if we follow one set of directions followed by
the other — except we don’t have to be slavish about it — we don’t literally
follow the first set of directions and then do the second. The sum is the set of
directions that take us directly to Moe’s without making a Kwik-E-Mart pit
stop.

When we actually compute vector sums using the component forms of the
vectors involved the computation is probably exactly what you would expect:
just add up the corresponding components.

Definition 1.3.3 (vector addition). If ~v and ~w are both vectors having m
components,

~v = 〈v1, v2, . . . , vm〉

and

~w = 〈w1, w2, . . . , wm〉

then their vector sum is defined by

~v + ~w = 〈v1 + w1, v2 + w2, . . . , vm + wm〉.

Remark 1.3.4. The addition of vectors is also known as componentwise ad-
dition. It’s worth pointing out that if two vectors have different numbers of
components, adding them together generally doesn’t make sense.

One last definition will be needed to work with vector equations. What does
it mean for two vectors to be equal to one another? The answer is probably
entirely obvious, but we’ll include a formal definition here for completeness.

Definition 1.3.5 (vector equality). If ~v and ~w are two vectors of length m
having components

~v = 〈v1, v2, . . . , vm〉

and

~w = 〈w1, w2, . . . , wm〉

then we say ~v and ~w are equal and write ~v = ~w if and only if for every i,
1 ≤ i ≤ m, vi = wi.
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Example 1.3.6 (a small vector problem). Consider the following set of vec-
tors: 〈1, 1, 0〉, 〈1, 1, 1〉 and 〈0, 0, 1〉. Is it possible to find scalars x1, x2 and x3
so that

x1〈1, 1, 0〉+ x2〈1, 1, 1〉+ x3〈0, 0, 1〉 = 〈2, 3, 4〉

Solution. Let’s modify the given problem by using the definitions of (first)
scalar multiplication (and then) vector addition:

〈x1, x1, 0〉+ 〈x2, x2, x2〉+ 〈0, 0, x3〉 = 〈2, 3, 4〉.

and then

〈x1 + x2, x1 + x2, x2 + x3〉 = 〈2, 3, 4〉.

Now (surprise!) that final form — after we use the definition of vector
equality — becomes a system of three equations in three unknowns.

x1 + x2 = 2

x1 + x2 = 3

x1 + x2 + x3 = 4

This system is different from the other systems we’ve seen so far. It doesn’t
have a solution. Its statement includes an impossibility; if x1 and x2 have a
sum of 2 (from the first equation) how can they also have a sum of 3 (which
is what the second equation asserts). So there simply aren’t three numbers
which can be used as the coefficients!

Let’s make a tiny change to the previous problem. Sometimes small changes
have large effects! We’ll change the second component in the vector on the
right-hand side to a 2.

Example 1.3.7 (a slightly tweaked vector problem). Consider the following
set of vectors: 〈1, 1, 0〉, 〈1, 1, 1〉 and 〈0, 0, 1〉. Is it possible to find scalars x1,
x2 and x3 so that

x1〈1, 1, 0〉+ x2〈1, 1, 1〉+ x3〈0, 0, 1〉 = 〈2, 2, 4〉

Solution. Notice that since the left-hand side vectors are all the same as
before we can reuse our previous work. The final form of the vector equation
is

〈x1 + x2, x1 + x2, x2 + x3〉 = 〈2, 2, 4〉.

Now, as a system of equations, we have

x1 + x2 = 2

x1 + x2 = 2

x1 + x2 + x3 = 4

and the first two equations are identical — they no longer cause a contra-
diction. This system not only has a solution, it has lots of them!

When one equation is an exact duplicate of the other, is there really any
reason to retain both copies in the system? Remember that we are mostly
concerned with solution sets to linear systems. Either of the copies of this
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equation will have the same effect on solution sets. For a given vector, they
will both either say “Sure! it works for me, put it in the solution set” or “No way,
that vector is not okay with me! It makes me false.” So, from the perspective
of solution sets, this system is really just a system of two equations in three
unknowns.

x1 + x2 = 2

x1 + x2 + x3 = 4

By subtracting the first equation from the second we get a unique value for
x3 (x3 = 2). But any pair of numbers that add up to 2 will work for x1 and x2.
Not only is the solution not unique, the solution set for this system is infinite!

We can express the solution set of this system using set-builder notation
and a parameter.

{〈2− t, t, 2〉 | t ∈ R}

Notice how the parameter t allows the values of x1 and x2 to range over all
possibilities that add up to 2? We essentially let x2 have any value whatsoever
(t can be any real number) and then we choose x1 in such a way that the sum
is 2. In a situation like this, x2 is known as a free variable.

1.4 Transformations

A transformation is a function whose inputs and outputs are vectors. In order
to discuss concepts like the range and domain of a transformation we’ll need
some terminology for sets of vectors. When we are considering the set of all
possible vectors of some type it is known as a vector space. At first, we are
going to be looking at the most basic and fundamental sorts of vector spaces
— where the vectors are ordered tuples of real numbers — but be advised that
later we will see that there are many other sorts of vectors!

Definition 1.4.1 (Real Euclidean spaces). Given a positive integer n we define
the real Euclidean space of dimension n (denoted Rn) to be the set of all
ordered n-tuples of real numbers.

Rn = {〈v1, v2, . . . , vn〉 | ∀i, 1 ≤ i ≤ n, vi ∈ R}

Recall that the domain of a function is the set from which the inputs
come. The set where the outputs may appear is known as the codomain of
the function. The codomain must be contrasted with the range which is the
set of outputs that actually do occur. We are going to be presuming a certain
familiarity with the basic terminology used with functions. You can skip over
the following list of (informal) definitions if you are already familiar.

domain The set of all inputs for a function. The domain is sometimes specified
while defining the function, but if it isn’t, the convention is to use the
biggest possible set for the domain.

codomain The set where the outputs of a function lie.

range The set of outputs that actually occur. (The range is generally a subset
of the codomain.)

image If an element, x, of the domain is given, we refer to f(x) as the image
of x.
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pre-image If we have some y (an output) in mind, any x (an input) such that
f(x) = y is called a pre-image of y.

There is a bit of an asymmetry in the way we speak of the various sets
that are related to a function. On the output side we have the codomain
and the range. On the input side we have only the domain. There is no
agreed upon name for a set that contains the domain, we simply insist that
the function must be defined for every element of the domain (which basically
sidesteps the issue). For the ordinary functions that one sees in calculus, the
codomain is the real numbers; the range and domain are generally subsets of
the real numbers. And so, the situation isn’t terribly complex. When we are
dealing with transformations things are harder. The domain and codomain of
a transformation are generally real Euclidean spaces — potentially of different
dimensions — so we will usually want to spell out what sorts of vectors are
expected as inputs, what sorts of vectors will we see as outputs and only then do
we get around to the heart of the matter: how do we compute the output from
the input? We’ll introduce the notation for a transformation via an example
and then treat the general case.

Example 1.4.2 (an example transformation). Let’s look at a transforma-
tion that takes vectors of length 6 as inputs, and outputs vectors of length
3. We’ll refer to the input vector as ~x and, as usual, its components will be
x’s with subscripts: ~x = 〈x1, x2, x3, x4, x5, x6〉. Similarly, the output will be
~y = 〈y1, y2, y3〉. This is only an example so we’ll just make up the rules that de-
termine those output components from the input components, the point here
is simply to demonstrate how one should write such a thing — which is as
follows:

T : R6 −→ R3

T (〈x1, x2, x3, x4, x5, x6〉) = 〈x1, x3, x5〉.

So this transformation just picks out the odd-numbered components of ~x
and puts them in ~y.

The most important transformations for us in this context are the linear
ones. In a linear transformation, the components of the output vector are com-
puted from the components of the input vector by “multiplying by constants
and adding everything up.” Because of the simplistic way that the outputs
are computed there is really nothing that can go wrong! With ordinary func-
tions from R to R we usually look at the rule for computing the output and
recognize certain values that must be eliminated from the domain — typically
where one sees “division by zero” or “square root of a negative” errors. No such
problem can arise with linear transformations, the domain will always be a
real Euclidean space of some dimension. Similarly, the codomain will be a real
Euclidean space; one whose dimension is simply the number of components in
the output vectors. The dimensions of the domain and codomain are easy to
think about — how many components do the input and output vectors have?
The range of a linear transformation is slightly more complicated. The out-
put vectors that actually occur will certainly be vectors having the number of
components as specified by the codomain, but do all such vectors necessarily
have to appear as outputs? In general, no.

The notation for a linear transformation first spells out the domain and
codomain and then gives the rule(s) for computing the output. Thus the
domain and codomain are known in advance; we need to do a little extra work
to figure out the range.

Before proceeding further we’ll give some formal definitions.
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Definition 1.4.3 (Transformations). Given positive integersm and n, a trans-
formation from Rm to Rn is a function, T , that takes vectors of length m
as inputs and returns vectors of length n. We write

T : Rm −→ Rn

T (~x) = ~y,

where the components of the vector ~y will need to be specified in terms of
the components of ~x.

Definition 1.4.4 (Domain of a transformations). The domain of a transfor-
mation, T is denoted by Dom(T ) and is generally a subset of Rm (provided T
is defined as above).

Dom(T ) = {~x ∈ Rm | T (~x) is defined}

Definition 1.4.5 (Co-domain of a transformations). The codomain of a
transformation, T is denoted by Cod(T ) and is equal to Rn (provided T is
defined as above).

Definition 1.4.6 (Linearity). A transformation T is linear if and only if given
any two elements ~u,~v ∈ Dom(T ) and any two real numbers α and β we have

T (α~u+ β~v) = αT (~u) + βT (~v).

Linearity is a really important concept! We will be using the definition
above over and over again. Let’s try to nail down our understanding of this
definition by translating it into ordinary language: A transformation is linear
if and only if when you apply it to a linear combination of vectors, the result
is equal to what you get if you form the same linear combination of the images
of those vectors. More succinctly: “The image of a linear combination is the
same linear combination of the images.” My advice (seriously!) is to treat that
last phrasing like a mantra — repeat it to yourself until you fully absorb the
meaning and it becomes second nature to you.

Look back at the formal definition of linearity, and notice what it looks
like symbolically: It appears as if the transformation T distributes over the
sum and that the scalars can be moved to the outside of the T ’s. Sometimes
an alternative definition of linearity is given which splits out these two issues.
This is sometimes useful in formulating a proof that some transformation is
linear (because it separates the argument into simpler parts).

Definition 1.4.7 (Linearity (alternate definition)). A transformation T is
linear if and only if given any two elements ~u,~v ∈ Dom(T ) and any real
number α, both of the following hold:

T (~u+ ~v) = T (~u) + T (~v),

and
T (α~u) = αT (~u).

Before we can go any further we have a small moral obligation to take care
of. Since we’ve just presented two definitions for a concept we have a duty to
verify that they actually define the same concept. If we state that two things
are the same, that really aren’t, we’re making a false equivalence. One of
the hallmarks of a good critical thinker is that they won’t be taken in by false
equivalences. So, what do you think? Are they definitely the same idea, or are
there transformations that are linear by one definition but not by the other?
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Theorem 1.4.8 (The two definitions of linearity are equivalent). Consider a
given transformation T from Rm to Rn. Let ~u and ~v be arbitrary vectors in
Rm, also let α and β be arbitrary real numbers. Then

T (α~u+ β~v) = αT (~u) + βT (~v)

if and only if

T (~u+ ~v) = T (~u) + T (~v) and T (α~u) = αT (~u)

Proof. (⇒) In this part of the proof we will be presuming the first statement
(the definition of linearity given first) and showing that the second statement
must be true.

Assume that T is a transformation and that for every pair of vectors ~u and
~v, and every pair of real numbers α and β,

T (α~u+ β~v) = αT (~u) + βT (~v).

if we set α = β = 1 we get

T (~u+ ~v) = T (~u) + T (~v).

Similarly, if we leave α arbitrary but set β = 0 we get

T (α~u) = αT (~u).

(⇐) In this part of the proof we will be working in the reverse direction, so
we assume that both

T (~u+ ~v) = T (~u) + T (~v) and T (α~u) = αT (~u)

hold.

It’s important to realize that the hypotheses we are using above are
generic statements. When we write T (α~u) = αT (~u) the scalar α
and the vector ~u are really beside the point. We are really asserting
a general rule about how T interacts with scaled vectors — any
other scalar times any other vector will work the same way. So for
example, that hypothesis will also let us deduce that

T (β~v) = βT (~v).

Consider T (α~u+ β~v). Using our first hypothesis (the one that shows how
T distributes over sums) we get

T (α~u+ β~v) = T (α~u) + T (β~v)

. Using the second hypothesis (twice) we get

T (α~u) + T (β~v) = αT (~u) + βT (~v).

Finally, putting these pieces together we have

T (α~u+ β~v) = αT (~u) + βT (~v)

which is the desired result.
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Definition 1.4.9 (Linear transformations). Given positive integers m and n,
a linear transformation from Rm to Rn is a transformation T , that takes
vectors of length m as inputs and returns vectors of length n and that is linear.
We write

T : Rm −→ Rn

T (~x) = ~y,

where the components of the vector ~y will need to be specified in terms of
the components of ~x.

There is an interesting connection between our use of the word “linear” in
talking about linear transformations and linear combinations. When a trans-
formation is linear the functions that determine the output’s components in
terms of the input’s components must be linear combinations. And vice versa,
if the component functions are linear combinations then the transformation
will be linear.

The content of the previous paragraph may not be surprising from a lin-
guistic perspective; they wouldn’t use the same word if the underlying concepts
were really different, would they? From a mathematical perspective it’s a bit
less obvious. Indeed this is the sort of thing that mathematicians call a theo-
rem. We’ll state this theorem now, but we’ll leave the proof to a later chapter.

Theorem 1.4.10 (coefficients of a linear transformation). Given a transfor-
mation T : Rm −→ Rn, T is linear if and only if, for all input vectors ~x the
components of T (~x) can be expressed as particular linear combinations of the
components of ~x.

In order to fully specify a linear transformation we need to give values for
all of the constants that are used in the linear combinations where the yi’s are
written in terms of the xi’s. For each of the n components of ~y, we will need
m numbers (as many as there are components in ~x). In other words we must
specify mn constants.

Definition 1.4.11 (components of a linear transformation). Given mn real
numbers, a11, . . . amn, we say they are the components of a linear transforma-
tion T ,

T : Rm −→ Rn

T (~x) = ~y,

provided

y1 = a11x1 + . . .+ a1mxm

...
yn = an1x1 + . . .+ anmxm.

1.5 Matrix notation
The three seemingly distinct viewpoints we’ve considered are unified by the
concept of a matrix.
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The word “matrix” is from Latin. The word entered the English language
with a variety of meanings — in Latin it means womb. In mathematics, matrix
(pl. matrices) always means a table containing numerical values. It is rather
hard to guess how a word meaning “uterus” could get morphed into one meaning
“table of numbers”, but languages are funny that way. . .

Generally speaking, a table of numbers will have some arbitrary number
of rows and of columns. There are some special cases that we’ll need to talk
about, but let’s look at the general situation first. We’ll use the variable m
to refer to the number of rows in a matrix and the variable n to refer to the
number of columns. We’ll use upper-case letters (about 90

Example 1.5.1 (matrix notation). Here are a couple of matrices:

A =

[
1 4 9
7 π 42

]
and B =

[
−1 11
−3 e

]
Notice how we are referring to the entire tables with the variables A and B?

If we need to refer to the individual entries of a matrix we’ll write things like
a23 = 42 (the number in the 2nd row and 3rd column of A is 42), or b12 = 11
(the number in the 1st row, 2nd column of B is 11).

It’s also fairly common to ignore this lower-case convention! That is, you
may also see things like A13 = 9 and B22 = e.

Now to the special cases. When the number of columns is n = 1, the matrix
is known as a column vector. When the number of rows is m = 1, the matrix
is known as a row vector. There is clearly a choice to be made as to whether
the things we have been referring to as (merely) “vectors” are going to be
represented as column vectors, or as row vectors. Here’s a surprising thing!
Your Calculus teachers and I (up until now) have been lieing to you. When
we wrote vectors as (for example) ~v = 〈1, 2, 3〉, it was only for convenience. A
row of numbers fits more easily on the page than a column does. For a variety
of reasons it makes sense to treat vectors as columns of numbers, not rows.

There is an operation known as transposition that changes row vectors
into column vectors and vice versa. The transpose of a matrix is indicated
by a superscript T, the rows of the transposed matrix are the columns of
the original matrix and its columns are the original matrix’s rows. This idea
(interchanging rows and columns) is surprisingly important and we’ll be using
it quite a bit in the future. For the moment let’s just notice that it gives us
a nice way to write a column vector — with the typographical advantage that
the components appear in a row!

To summarize what the last few paragraphs have said: It is technically not

right to write ~v = 〈1, 2, 3〉, we should really write ~v =

 1
2
3

, but that takes

up too much vertical space so instead we write ~v = [1 2 3]T . This may all seem
like too high of a price to pay for accuracy, but it will pay future dividends
if we start thinking now about rows and columns and how to switch between
them.

If we only had row and column vectors to worry about we’d probably find
some other way to distinguish them — maybe there’d be red vectors and blue
vectors!

Note 1.5.2. In Physics (especially in the Tensor Analysis which is used in
e.g. General Relativity) they distinguish between covariant and contravariant
indices. An entity with a single contravariant index is a vector, if instead there
is a single covariant index it is known as a co-vector. These concepts aren’t
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identical to row/column vectors, but nevertheless, contravariant vectors are
usually written as columns and covariant vectors as rows.

By convention there is no need to refer to the entries of a row or column
vector using double indices — one of them would always be 1 so we can omit
it. When we have more general matrices, where m and n are both greater
than 1, the roles of rows and columns are more evident and two indices will be
necessary to refer to the entries.

One useful way to think about matrices is the following: When we write
down a system of equations, a lot of the symbols that we write are redundant.
If we eliminate all of the stuff that is utterly predictable we are left with a table
of numbers — in other words, a matrix. So one way to think of matrices is that
they are highly abbreviated ways of referring to a system of linear equations.
In this scheme the rows of the matrix correspond to the individual equations
in the system and the columns contain all the coefficients that multiply a given
variable. A short example will probably help:

Example 1.5.3 (Converting a linear system to matrix form). Consider the
following system of 3 equations in 4 variables.

x1 + x2 + 3x4 = 101

2x1 − x2 + x3 + x4 = 102

3x2 − x3 + 2x4 = 103

Now we’ll take one step backwards before proceeding two steps forward. If
a variable appears, but has no coefficient, that just means the coefficient is 1.
If a variable doesn’t appear at all, that means the coefficient is 0. Finally, if
we see subtraction we can always replace it by addition (by putting a minus
sign on the coefficient). So, let’s re-express this system in a fully anal-retentive
way. . .

1x1 + 1x2 + 0x3 + 3x4 = 101

2x1 +−1x2 + 1x3 + 1x4 = 102

0x1 + 3x2 +−1x3 + 2x4 = 103

Okay, so now the promised two steps forward. First, notice that in every
equation in the system every variable is present and they all appear in ascend-
ing order. If we were only given the lists of coefficients we’d easily be able to
reconstruct the equations. So, we’re going to eject all of the plus signs and all
of the variables with all of those subscripts. We just won’t deign to write them
down! Sometimes it’s a good idea to imagine their presence but it certainly
isn’t necessary to. Also, the equals signs that separate the left- and right-hand
sides of the equations always come before the very last number. There really
isn’t a lot of information conveyed by the appearance of those equals signs, but
we usually keep a slight vestige of them around — a thin vertical line separates
the last column of the matrix form from everything else. So, with no further
ado, here is the matrix form of this system: 1 1 0 3 101

2 −1 1 1 102
0 3 −1 2 103


In the previous example the final matrix we wrote is actually known as the

augmented matrix of the system. Sometimes it is a good idea to separate
out the part of the matrix that appears to the left of the thin vertical line.
That part is known as the coefficient matrix of the system. This isn’t just
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pedantry! In many real-world applications we need to solve bunches of linear
systems that all have the same coefficient matrix — so they only differ in the
final column (a.k.a. the augmented column) of their augmented matrices.
We can take advantage of such a situation, essentially solving all of the systems
while only doing the work of solving the first one!

Matrix notation was probably invented purely out of laziness. When we
use the Re-ordering, Scaling and Combining operations that we introduced in
Section 1.2, we find ourselves having to re-copy the entire system over and
over. By switching to matrix notation we get a considerable savings in effort.
The operations that we originally developed to use on equations now become
operations that one can apply to the rows of a matrix — a.k.a. row operations
— which we will study in much greater depth in Section 2.4. Regardless of the
origins of matrix notation, nowadays we don’t think of matrices only in terms
of being abbreviations for linear systems. They have taken on a life of their
own!

There are two features of matrices that we’ll explore in the remainder of
this section. The first is that matrices may be thought of as “funny shaped”
vectors. The second is that, under certain conditions, we can multiply matri-
ces. If you’ve already studied multi-variable calculus (and perhaps even if you
haven’t) you’ll have run into the dot product (a.k.a. scalar product) and the
cross product (a.k.a. vector product) in R3. No matter what the dimension of
the space, there is always a dot product. On the other hand, there is usually
nothing analogous to the cross product — it depends on a very special coinci-
dence, an odd fact about the space R3. The dot product is a way of multiplying
vectors, but the product is not a vector. On the other hand, the cross product
does result in a vector. Matrices (as “funny shaped” vectors) give us a way of
multiplying vectors and getting other vectors.

The most important thing with vectors is that we need to be able to add
them. The second most important thing is that we should know how to scale
them.

If A and B are matrices, what would it mean to add them? As was the
case with vectors, it doesn’t make any sense to add them unless they are the
same size. With vectors they needed to have the same number of components
in order to even think about adding them. With matrices the restriction is
even stronger; they need to have the same number of rows and of columns.
Provided that that restriction is met, we just add the corresponding entries.

Definition 1.5.4 (matrix addition). If A and B are both m × n matrices,
their sum, A + B is also an m × n matrix. For all integers i and j satisfying
1 ≤ i ≤ m and 1 ≤ j ≤ n, the entry in the ith row and jth column of A + B
is aij + bij .

Scaling also works in much the same way as it did with vectors. If we
multiply a scalar and a matrix, every entry of the matrix is multiplied by the
scalar.

Definition 1.5.5 (matrix scaling). If A is an m × n matrix, and s is a real
number, the scalar product, sA is also an m× n matrix. For all integers i and
j satisfying 1 ≤ i ≤ m and 1 ≤ j ≤ n, the entry in the ith row and jth column
of sA is s · aij .

Example 1.5.6 (vector properties of matrices). Let A =

[
1 −1
−1 2

]
and
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B =

[
0 1
2 3

]
. These matrices are both 2× 2 so their sum is defined.

A+B =

[
1 0
1 5

]
Let’s also provide an example of scaling. If we scale the matrix A by a

factor of 3 we get

3A =

[
3 −3
−3 6

]
Exercise 1.5.7 (linear combinations of matrices). Suppose that A and B are
the following 2× 3 matrices:

A =

[
1 2 3
4 5 6

]
and B =

[
3 5 7
4 6 8

]
What is 5A− 2B?
Solution.

5A− 2B =

[
−1 0 1
12 13 14

]
.

So that was nice! Once we know how to add matrices and how to mul-
tiply them by scalars, we can form linear combinations. Next we’ll look at
multiplying our funny shaped vectors. . .

The easiest example (and also a very instructive example) of multiplying
vectors is the product of a row and a column vector. Provided they have
the same number of entries, a row vector times a column vector produces a
1 × 1 matix — also known as a real number. You have almost certainly seen
this before! The dot product of two vectors is actually a row/column matrix
product. In fact, in many settings they will write ~xT~y rather than ~x · ~y when
referring to the dot product. As you move towards more advanced math the
tendency will be to call this the “inner product” rather than the “dot product”,
one reason to make the change (other than it sounds more sophisticated) is
that there is also an “outer product” of vectors which is what you get if you
multiply a column times a row. As we’ll see shortly, ~xT~y and ~x~yT are extremely
different! Anyway, we need to do this row/column product as a component of
the general matrix product computation so let’s proceed to over-explain it by
some huge factor. . .

If you’ve ever done the challenge where you rub your belly in a circular
motion while simultaneously patting your head, then this shouldn’t be too
difficult. What you need to do is trace across the entries of a row with your
left index finger, while simultaneously tracing down the entries of a column
with your right index finger. As you encounter the entries you multiply them
and keep a running tally of the sum of these products.

Example 1.5.8 (an inner product). Suppose

~x =


3
1
−2
5

 and ~y =


−1
6
4
7


then the inner product of these two vectors (~xT~y) is the following row/column
matrix computation:

~xT~y =
[
3 1 −2 5

]
·


−1
6
4
7

 = 3·(−1)+1·6+(−2)·4+5·7 = 30
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Notice that if the vectors had different lengths (I mean “lengths” as in
“number of entries”) the process we’ve described wouldn’t work out so good. . .
One of your fingers would be out of entries before the other! This is our first
example of an idea known as conformability. Suppose we have a row vector
of length m (that is, a 1×m matrix) and a column vector of length n (in other
words a n×1 matrix), then they are conformable if m = n and if m 6= n they
are not conformable, in which case the matrix product can’t be computed.

The general rule for computing matrix products involves doing this row/-
column product multiple times. Suppose A is a p× q matrix and B is an r× s
matrix. The product AB will be a p× s matrix, but it can only be computed
if q = r. The entry in the p-th row and s-th column of the result is obtained
using the p-th row of A and the s-th column of B. When you physically write
the sizes of the multiplicands next to one another, the inner two numbers must
match and the outer two numbers tell you the size of the result!

Definition 1.5.9 (matrix conformability). Suppose A is a p× q matrix and B
is an r × s matrix. If q = r these matrices are conformable and the product
AB can be computed.

Note 1.5.10. Conformability has a directionality. If A and B are conformable
it is not necessarily the case that B and A are conformable. Matrices fail to
obey the commutative law in a fairly spectacular way! It is not generally
the case that AB = BA. Indeed, quite often it is impossible to compute the
product BA, even given that it is possible to compute AB.

Definition 1.5.11 (matrix product). Suppose we are given two matrices, A
and B that are conformable for matrix multiplication, further, suppose that A
is m × n and B is n × p. The matrix product AB will be an m × p matrix.
The entry in the i-th row and j-th column of AB is

ABij =
∑

k = 1nAik ·Bkj
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